ELUCIDATING THE ROLE OF THE SHAPE OF THE PSD IN PRECIPITATION ESTIMATION

Francisco J. Tapiador
Dean of the Faculty of Environmental Sciences and Biochemistry
Head of the ess research group

University of Castilla-La Mancha, Toledo, Spain
interests in mp

• users of mp parameterisations

• main interest in the climatology: how those mps operate in different regions and regimes

• role of the DSD assumptions

• also interested in the assumptions behind the parameterizations

• test / verify / validate
Direct Interactions of Parameterizations

- MP
- Cloud detrainment
- Non convective rain
- Convective rain
- Radiation
- Surface emission/ albedo
- Downward SW, LW
- Surface SH, LH
- PBL
- T, Qv, wind
Multi-Physics (MPP)

Error in the Storm Center Location Compared with Ground Radar

- **Kessler**
- **Lin**
- **WSM-3**
- **WSM-5**
- **WSM-6**
- **Goddard**
- **Thompson**

Cumulus param.:
- **B-M-J**
- **G-D**
mp types

- bin microphysics

- bulk microphysics
Particle Size Distribution

\[p(D) = D^\mu \Lambda^{\mu+1} \frac{e^{-\Lambda D}}{\Gamma(\mu + 1)} \]

- \(p(D) \in [0, 1] \)
- \(p(\Omega) = 1 \)

\[p(D_1 \cup D_2 \cup \ldots \cup D_n) = \sum_{i=1}^{n} p(D_i) \]

\[n(D) = N_T p(D) = N_T D^\mu \Lambda^{\mu+1} \frac{e^{-\Lambda D}}{\Gamma(\mu + 1)} \]
Issue #1

• One-mode parameterizations have been improved
• Two and three modes params are becoming more common
• Computer resources allow for more complex models
• Why some people claim that simple parameterisations work the best?
Issue #2

- Empirical fits to for instance the gamma function are not proper PDFs

\[n(D)_{Tes} = N_0^* F_\mu(D/D_m) \]

\[F_\mu(X) = \frac{\Gamma(4)}{4^4} \frac{(4 + \mu)^{4+\mu}}{\Gamma(4 + \mu)} X^\mu e^{-(4+\mu)X} \]
What is a PDF?

\[p(D) \in [0, 1] \]
\[\int p(D) dD = 1 \]
\[p(D) \in \mathbb{R}, p(D) \geq 0 \]
\[p(D_1 \cup D_2 \cup \ldots D_n) = \sum_{i=1}^{n} p(D_i) \]
\[n(D) = N_T \cdot p(D) \]
Why do we want DSDs to be probabilistic (N_T-linked with PDFs)?

- Mathematical consistency: robust parameter estimation requires PDFs.
- Physical modeling: DSD comes from a random process.
- We want a coherent set of units.
- To build a Z/R relationship with independent parameters.
- To analyze microphysics in terms of physically-meaningful parameters [not a and b].
PDF—based DSD model

How does this approach differs from other DSDs?

\[n(D) = N_T \cdot p(D) = N_T D^\mu \Lambda^{\mu+1} \frac{e^{-\Lambda D}}{\Gamma(\mu + 1)} \]

Only apparently similar to for instance Ulbrich’s DSD:

\[n(D)_{Ulbr} = N_0 D^\mu e^{-\Lambda D} \]

[Note that units for \(N_0 \) are \(m^{-4-\mu} \)]
Parameters

\[N_T, m, \sigma^2 \]

\(m \) and \(\sigma^2 \) are physically related because of hydrodynamics

\[[m, \sigma^2] \]

are highly correlated in real rainfall

so you end up with just \([N_T, D_m]\)

the largest variation is in \(N_T \)
A Probabilistic View on Raindrop Size Distribution Modeling: A Physical Interpretation of Rain Microphysics

FRANCISCO J. TAPIADOR

Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain

Ziad S. Haddad and Joe Turk

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 19 February 2013, in final form 20 September 2013)
IN ICE-POP 2018
WE WANT TO DO ANALYSE SUCH DYNAMICS IN 3D AND IN TIME

• Radars
• Models
• Satellites

We are really interested in the dynamics of the Nt
Issue #3

- mp parameterizations are tied to observations
- These observations are seldom comprehensive
- mp may not be good for other regimes / areas
tracing back
‘historical’ assumptions
mp processes
<table>
<thead>
<tr>
<th>Variable</th>
<th>Size distribution</th>
<th>Fall velocity</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_x (kg/kg)</td>
<td>$N_x(D)$ (m$^{-4}$)</td>
<td>U_{dx} (m/s)</td>
<td>ρ_x (kg/m3)</td>
</tr>
<tr>
<td>Q_r</td>
<td>$N_r(D) = N_{r_0} \exp(-\lambda D)$</td>
<td>$a_r D_r^{b_r} \left(\frac{\rho_0}{\rho} \right)^{1/2}$</td>
<td>$\rho_w = 1 \times 10^3$</td>
</tr>
<tr>
<td>N_r</td>
<td>$N_{r_0} = 8 \times 10^6$</td>
<td>$a_r = 842$</td>
<td></td>
</tr>
<tr>
<td>$b_r = 0.8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_s</td>
<td>$N_s(D) = N_{s_0} \exp(-\lambda D)$</td>
<td>$a_s D_s^{b_s} \left(\frac{\rho_0}{\rho} \right)^{1/2}$</td>
<td>$\rho_s = 8.4 \times 10$</td>
</tr>
<tr>
<td>N_s</td>
<td>$(N_{s_0} = 1.8 \times 10^6)$</td>
<td>$a_s = 17$</td>
<td>$r_{s_0} = r_0 = 75 \mu m$</td>
</tr>
<tr>
<td>$b_s = 0.5$</td>
<td></td>
<td>$b_s = 0.5$</td>
<td></td>
</tr>
<tr>
<td>Q_g</td>
<td>$N_g(D) = N_{g_0} \exp(-\lambda D)$</td>
<td>$a_g D_g^{b_g} \left(\frac{\rho_0}{\rho} \right)^{1/2}$</td>
<td>$\rho_g = 3 \times 10^2$</td>
</tr>
<tr>
<td>N_g</td>
<td>$(N_{g_0} = 1.1 \times 10^6)$</td>
<td>$a_g = 124$</td>
<td>$r_{g_0} = r_0 = 75 \mu m$</td>
</tr>
<tr>
<td>$b_g = 0.64$</td>
<td></td>
<td>$b_g = 0.64$</td>
<td></td>
</tr>
<tr>
<td>Q_c</td>
<td>mono</td>
<td>$a_c D_c^{b_c}$</td>
<td>$\rho_c = 1.0 \times 10^3$</td>
</tr>
<tr>
<td>$D_i = \left(\frac{6\rho Q_c}{\pi \rho_w N_c} \right)^{1/3}$</td>
<td>$a_c = 3 \times 10^7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_c = 1 \times 10^8$ m$^{-3}$</td>
<td>$b_c = 2.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_i</td>
<td>mono</td>
<td>$a_i D_i^{b_i} \left(\frac{\rho_0}{\rho} \right)^{0.35}$</td>
<td>$\rho_i = 1.5 \times 10^2$</td>
</tr>
<tr>
<td>N_i</td>
<td>$D_i = \left(\frac{6\rho Q_i}{\pi \rho_i N_i} \right)^{1/3}$</td>
<td>$a_i = 7 \times 10^2$</td>
<td>$m_{i_0} = 1 \times 10^{-12}$ kg</td>
</tr>
<tr>
<td>$b_i = 1.0$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(\partial \{N_R, q_R\}/\partial t)_{\text{RacR}}

- Spherical drops
- Fall at terminal \(v\)
- Spaced in the vertical
- Calm, laminar flux
- Large efficiency in collision and coalescence (=1)

Assumptions

Parameterizations

Beheng (1994)

\[(\partial N_R/\partial t)_{\text{accRR}} = -8.0 \cdot 10^3 \cdot N_R \cdot q_R\]
\[(\partial q_R/\partial t)_{\text{accRR}} = 0\]

Effects on \(N\) and gamma pdf

\[^\text{V}\] \(^\text{mV} = \) \(^\text{sV} = \)
\[^\text{R}\downarrow \] \(^\text{mR} \uparrow = \) \(^\text{sR} \downarrow = \)
\[^\text{S}\] \(^\text{ms} = \) \(^\text{SS} = \)
\[^\text{I}\] \(^\text{mI} = \) \(^\text{SI} = \)
\[^\text{G}\] \(^\text{mg} = \) \(^\text{SG} = \)

Pictorial representation

- Spherical drops
- Fall at terminal \(v\)
- Spaced in the vertical
- Calm, laminar flux
- Large efficiency in collision and coalescence (=1)

Effects on \(N\) and gamma pdf
size and shape

4.00 mm

3.68 mm

2.90 mm

2.65 mm

1.75 mm

1.35 mm
\[
(\frac{\partial N_R}{\partial t})_{\text{accRR}} = -8.0 \cdot 10^3 N_R q_R
\]
PSacR $\left(\partial \{N_R, q_R \}/\partial t \right)_{\text{SacR}}$

Assumptions
- Spherical drops
- Same param b for both psd ()
- Fall at terminal v
- Spaced in the vertical
- Calm, laminar flux
- Large efficiency in collision and coalescence ($= 1$)

Parameterizations
Morrison's mp, based on Ikawa and Saito (1991)

Effects on N and gamma pdf

<table>
<thead>
<tr>
<th>N_V</th>
<th>m_V</th>
<th>S_V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_R \downarrow$</td>
<td>$m_R \uparrow$</td>
<td>$S_R \downarrow$</td>
</tr>
<tr>
<td>N_S</td>
<td>$m_S \uparrow$</td>
<td>$S_S \uparrow$</td>
</tr>
<tr>
<td>N_I</td>
<td>$m_I = $</td>
<td>$S_I = $</td>
</tr>
<tr>
<td>N_G</td>
<td>$m_G = $</td>
<td>$S_G =$</td>
</tr>
</tbody>
</table>
Effects on N and gamma pdf

- $N_V = m_V = S_V =$
- $N_R = m_R \uparrow = S_R \uparrow$
- $N_S \downarrow = m_S \uparrow = S_S \uparrow$
- $N_I = m_I = S_I =$
- $N_G = m_G = S_G =$

Assumptions

- Same param b for both psd (!)
- Fall at terminal v
- Spaced in the vertical
- Calm, laminar flux
- Large efficiency in collision and coalescence ($= 1$)

Morrison’s mp, based on Ikawa and Saito (1991)

Parameterizations
Francisco J. Tapiador's precipitation microphysics 2014

Morrison’s mp code

Morrison et al. (2005)

Ikawa&Saito (1991)
c) Collision between rain and snow (see Fig. B-11-2c)

For collision between rain and snow, the accretion rate of rain by snow is

$$
Psacr = \frac{1}{\rho} \int_0^\infty \int_0^\infty \frac{\pi}{4} (Dr + Ds)^2 Er_s |U_{dr} - U_{ds}| \rho_w \frac{\pi}{6} Dr^3 N_{r0} \exp(-\lambda_r Dr) N_{s0} \\
\times \exp(-\lambda_s Ds) dDr dDs.
$$

In most of models so far, the following approximation is used for the differential velocity;

$$
|U_{dr} - U_{ds}| \approx |\overline{U}_r - \overline{U}_s|.
$$

This approximation underestimates Pracs when the value of \overline{U}_r is close to \overline{U}_s. To remedy this underestimation, we used the following approximation proposed by Mizuno (1990a) who obtained the exact value of the integral of Eq. (11-55) analytically for the case of $b_r = b_s = 0.5$,

$$
|U_{dr} - U_{ds}| \approx \sqrt{(\alpha \overline{U}_r - \beta \overline{U}_s)^2 + \gamma \overline{U}_r - \overline{U}_s}
$$

with $\alpha = 1.2$, $\beta = 0.95$ and $\gamma = 0.08$. The approximation expressed by Eq. (11-56) yields

$$
Psacr = \pi^2 Er_s \sqrt{(\alpha \overline{U}_r - \beta \overline{U}_s)^2 + \gamma \overline{U}_r \overline{U}_s} \frac{\rho_w}{\rho} N_{r0} N_{s0} \left(\frac{5}{\lambda_r^6 \lambda_s} + \frac{2}{\lambda_r^5 \lambda_s^2} + \frac{0.5}{\lambda_r^4 \lambda_s^3} \right),
$$

The number of collisions between snow and rain particles in unit time is given as

$$
Nsacr = Nracs = \int_0^\infty \int_0^\infty \frac{\pi}{4} (Dr + Ds)^2 Er_s |U_{dr} - U_{ds}| \\
\times N_{r0} \exp(-\lambda_r Dr) N_{s0} \exp(-\lambda_s Ds) dDr dDs.
$$
The Stochastic Collection Equation (SCE)

\[\frac{\partial N_k}{\partial t} = \frac{1}{2} \sum_{i=1}^{k-1} K_{i,k-i} N_i N_{k-i} - N_k \sum_{i=1}^{\infty} K_{i,k} N_i, \]

is a particular case of

The Smoluchowski Coagulation Equation

\[\frac{\partial n(x_i, t)}{\partial t} = \frac{1}{2} \sum_{j=1}^{i-1} K(x_i-x_j, x_j) n(x_i-x_j, t) n(x_j, t) - \sum_{j=1}^{\infty} K(x_i, x_j) n(x_i, t) n(x_j, t). \]
which is a particular case of

The Fokker-Planck Equation (FPE)

\[
\frac{\partial W}{\partial t} = \left[- \sum_{i=1}^{N} \frac{\partial}{\partial x_i} D_i^{(1)}(\{x\}) + \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_i \partial x_j} D_{ij}^{(2)}(\{x\}) \right] W
\]
Microphysics

Quantitative evolution of the DSD
Microphysics

Quantitative evolution of the DSD

\[
\lim_{t \to s} \frac{1}{t - s} \int_{|y-x| > \varepsilon} p(s, x; t, y) dy = 0;
\]

\[
\lim_{t \to s} \frac{1}{t - s} \int_{|y-x| > \varepsilon} (y - x)p(s, x; t, y) dy = f(s, x) = D^{(1)};
\]

\[
\lim_{t \to s} \frac{1}{t - s} \int_{|y-x| > \varepsilon} (y - x)^2 p(s, x; t, y) dy = g^2(s, x) = D^{(2)};
\]
Microphysics

Quantitative evolution of the DSD

\[
\lim_{t \to s} \frac{1}{t - s} \int_{|y - x| > \epsilon} (y - x) x^{\mu_x} \Lambda^{\mu_x+1} \frac{e^{-\Lambda x x}}{\Gamma(\mu_x + 1)} y^{\mu_y} \Lambda^{\mu_y+1} \frac{e^{-\Lambda y x}}{\Gamma(\mu_y + 1)} dy = D^{(1)}
\]

\[
\lim_{t \to s} \frac{1}{t - s} \int_{|y - x| > \epsilon} (y - x)^2 x^{\mu_x} \Lambda^{\mu_x+1} \frac{e^{-\Lambda x x}}{\Gamma(\mu_x + 1)} y^{\mu_y} \Lambda^{\mu_y+1} \frac{e^{-\Lambda y x}}{\Gamma(\mu_y + 1)} dy = D^{(2)}
\]
Key interests in ICE-POP 2018

· Test parameterizations
· Investigate the dynamics of the DSD and RDSD and check assumptions
· Analyse spatial variability
· Analyse temporal variability
· Advance in the F-P modelling of the DSD evolution: new or newish parameterisation
Thanks

more about UCLM at www.uclm.es

and nice promotional video here:

https://www.youtube.com/watch?v=wxCRdCnSyPw&feature=youtu.be